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Preface

In recent years, engineering and applied sciences have witnessed remarkable
advancements, driven by technological innovation, increasing complexity in
problem-solving and interdisciplinary approaches. These fields are at the
forefront of addressing global challenges, including sustainable
development, energy efficiency, automation, and health care. In this dynamic
landscape, the role of research methodologies cannot be understated. They
provide the foundation for inquiry, enabling engineers and scientists to
develop new technologies, optimize processes, and generate novel insights.

This book, Research Methodologies in Engineering and Applied
Science, is designed to serve as a comprehensive guide for students,
researchers, and professionals seeking a solid understanding of the research
methods essential to their fields. The motivation for compiling this book
stems from the growing need to bridge theoretical research frameworks with
practical applications. Engineers and applied scientists often face the
challenge of converting abstract ideas into real-world solutions, and the
methodology is what facilitates this transformation.

Through this text, we aim to cover a wide array of research
methodologies, ranging from quantitative to qualitative approaches,
experimental design, computational modeling, and simulation techniques.
We explore both classical methods and cutting-edge tools like artificial
intelligence and data analytics, which are becoming increasingly important
in modern research. The objective is to provide a clear roadmap for
developing sound research questions, designing experiments, collecting data,
and analyzing results with scientific rigor.

Each chapter is structured to guide the reader through different phases of
research, with examples and case studies drawn from various branches of
engineering and applied science. The integration of theory and practice
ensures that readers not only gain knowledge of methodologies but also learn
how to apply them to real-world problems. Special emphasis is placed on
interdisciplinary research, collaboration, and innovation, which are critical in
today’s research landscape.

We hope that this book will serve as an indispensable resource, offering
insights and tools that empower researchers to contribute to their respective
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fields with confidence and precision. It is our belief that by mastering
research methodologies, engineers and applied scientists will be better
equipped to tackle complex problems and push the boundaries of what is
possible in their disciplines.

We extend our gratitude to the contributors, whose expertise and
dedication have made this book a reality. Their collective efforts reflect the
diversity and depth of research methodologies that are crucial for advancing
knowledge in engineering and applied sciences. Finally, we thank our
readers for choosing this book as part of their research journey. We hope it
will inspire and equip you to explore new frontiers in your own research
endeavors.

Dr. Ranjan Kumar

Associate Professor,

Department of Mechanical Engineering,
Swami Vivekananda University,
Kolkata, West Bengal, India
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Chapter -1

Evaluating the Effectiveness of Support Vector Machine
Kernels for Gear Fault Detection: Insights from Confusion
Matrices and Receiver Operating Characteristic Analysis

Sandeep Kumar Paral, Ranjan Kumar and Arnab Das

Abstract

Gear fault classification plays a crucial role in predictive maintenance
and ensuring the reliable operation of industrial machinery. This study
evaluates the performance of Support Vector Machine (SVM) classifiers
with different kernels for gear fault classification using a dataset consisting
of vibration signals. The kernels considered include linear, fine Gaussian,
medium Gaussian, and coarse Gaussian. The performance of each classifier
is assessed using confusion matrices and Receiver Operating Characteristic
(ROC) curves. The results demonstrate that the Gaussian kernels outperform
the linear kernel, with the medium and fine Gaussian kernels achieving the
highest accuracy, precision, sensitivity, and F1 scores. The ROC curves
further confirm the superiority of the Gaussian kernels, with their curves
being further from the diagonal line and closer to the top-left corner,
indicating a better trade-off between the true positive rate and the false
positive rate. However, the choice between the fine and medium Gaussian
kernels may depend on the balance between performance and computational
complexity. The study highlights the importance of selecting an appropriate
kernel for SVM-based gear fault classification and provides insights into the
performance characteristics of different kernels. Further research is
recommended to explore feature engineering techniques and optimize the
kernel selection and hyperparameter tuning process.

Keywords: Machine learning, support vector machine, gear fault analysis,
gaussian kernel, confusion matrix, ROC

Introduction
Gearboxes play a vital role in numerous mechanical systems, serving as

essential components for power transmission and speed control M. These
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critical elements are found in a wide range of applications, from industrial
machinery and automotive transmissions to aerospace systems @ and wind
turbines 1. The smooth operation and reliability of gearboxes are paramount
to ensuring the optimal performance and longevity of the overall mechanical
system. However, gears within these gearboxes are susceptible to various
types of damage, such as missing teeth, tooth root cracks, tooth wear, pitting,
and eccentricity. These faults can lead to reduced efficiency, increased
vibration, and ultimately, catastrophic failure if left undetected and
unaddressed. The consequences of gear failures can be severe, resulting in
costly downtime, expensive repairs, and potential safety hazards ™. Industry
estimates suggest that gear-related issues cost millions of dollars annually in
terms of maintenance, repairs, and lost productivity.

To mitigate these risks and minimize the financial impact of gear
failures, early fault detection and diagnosis are crucial. Traditional methods
of gear fault detection often rely on periodic inspections and scheduled
maintenance, which can be time-consuming, labor-intensive, and may not
always detect faults in their early stages. Therefore, there is a growing need
for machine learning (ML) techniques that can accurately and efficiently
identify gear faults, enabling proactive maintenance and preventing
unexpected breakdowns [ 61, The supervised ML algorithms can learn from
historical data and extract meaningful patterns to distinguish between
healthy and faulty gears. Among the various supervised ML classification
methods, Support Vector Machines (SVM) find an optimal hyperplane to
separate different classes in a high-dimensional feature space [1. By
employing different kernel functions, such as polynomial and Gaussian
kernels, SVM can effectively handle complex and non-linearly separable
data (891,

This paper explores the application of SVM with different kernels such
as linear and fine, medium, and coarse Gaussian for gear fault classification.
The study utilizes a binary dataset comprising displacement amplitude
measurements along the x and y axes under varying load and speed
conditions, featuring both missing tooth and no-fault gear instances. The
primary objective is to compare the performance of the kernels in accurately
detecting gear faults and assess their suitability for industrial
implementation.
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Dataset and Methodology
Dataset

The dataset utilized in this study comprises vibration data collected from
a double-speed reduction gearbox, specifically focusing on gear 1, which has
been modified to simulate various fault conditions (Fig. 1). Data was
gathered for five defective gears and one normal gear, across a range of
speeds and loads. For binary classification, we focus on the amplitude data
from the normal gear and the missing tooth defective gear, with each dataset
containing 150,000 observations and encompassing five distinct features.

This data collection was part of a project for the Deep Neural Network
course at Southern Denmark University [ The features in the dataset
include displacement measurements along the x-axis (sensorl), and y-axis
(sensor2) with a constant sampling rate (time) under various speed settings
(speed set: 8.33, 25, and 40 revolutions/sec) and load values (load value: 0
and 80 Nm), and a label indicating the gear fault condition (gear_fault_desc).
There are 150,000 measurements for each gear condition such as no-fault
and missing teeth. These measurements are divided into six combinations of
speed settings and load values, with 25,000 measurements at 5kHz sample
frequency for each combination. The measurement start time is different for
every combination of speed setting and load value in the actual dataset. This
results in a total of 150,000 measurements for each gear condition. The
amplitude data collected under different loading conditions provides critical
insights into the gearbox's behavior across various operating scenarios. This
comprehensive dataset is instrumental in developing and evaluating gear
fault classification algorithms using machine learning techniques. The
detailed visualization of the collected data for the missing tooth and no-fault
conditions is presented in Fig. 2.

O/P

Shaft |

ot shaft IT

Fig 1: A schematic representation of the double-speed reduction gearbox
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I 13:06:37. 020800

Fig 2: The displacement measurement of the (a) no-fault and (b) missing tooth gear
under different speeds and loads. Each response has 150,000 measurements

Dataset Preprocessing

Data preprocessing is an important step in preparing a dataset for gear
fault classification with machine learning algorithms. The no-fault and
missing tooth data files are encoded into one-hot encoding, with 0
representing no-fault and 1 representing missing tooth. All input features are
normalized [0,1] to eliminate the influence of the scaling and unit using
equation 1 as mentioned below.

Normalized value = ﬁ 1)

Where x is the input feature value, and x,,;,and X, are the minimum
and maximum values of the feature, respectively. To ensure an unbiased
dataset, the time feature has been modified to range from 0.0002 seconds to
5 seconds for each combination of speed and load, based on the sampling
rate of 5 kHz. The dataset is split into a training set (80%, 240,000 samples)
and a testing set (20%, 60,000 samples). The selected features for analysis
include sensorl, sensor2, time, speed, load value, and gear fault. The
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preprocessed dataset is visualized using a parallel coordinates plot to acquire
insights into the data distribution and correlations between features, shown
in Fig. 3. These preprocessing steps ensure that the present dataset is
properly formatted and can be further processed with SVM.

Responselabels
No fault
missing tooth

Normalized value

sensor1 sensor2 time speedSet load_value

Fig 3: The parallel coordinated plot of the normalized input features
Support Vector Machine (SVM)

SVM is a powerful supervised learning algorithm used for classification
and regression. In gear fault classification, SVM aims to find an optimal
hyperplane that separates classes in a high-dimensional feature space such as
no-fault and missing tooth. The basic concept is to maximize the margin
between the hyperplane and the nearest data points from each class, called
support vectors, which increases generalization and reduces overfitting [,
For non-linear data, kernel functions have been used to transform the data
into a higher-dimensional space, enabling linear separation and allowing
SVM to learn complex, non-linear decision boundaries effectively. In this
study, we explore the application of SVM with different kernel functions for
gear fault classification:

The linear kernel is the simplest kernel function and is used when the
data is linearly separable 2, It is defined as the dot product between two
input vectors as shown in equation 2, where x and y are input vectors, and
K (x,y) represents the kernel function.

K(,y) =x"y )

The Gaussian kernel, commonly known as the radial basis function
(RBF) kernel, is a popular choice for nonlinear classification tasks 31, It
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maps the input data to an infinite-dimensional feature space and is defined as
equation 3:

K(x,y) = exp(=rllx — ylI*) ®)

Where r is a hyperparameter that determines the width of the Gaussian
function, and ||x - y|| denotes the Euclidean distance between the input
vectors x and y. The Gaussian kernel can be further categorized based on the

value of r such that; Fine Gaussian:r = \/é : Medium Gaussian:r = \/5
; Coarse Gaussian:r = 4,/p where p is the feature number [,

Fine Gaussian, a smaller p value leads to a more complex decision
boundary, capturing fine-grained details in the data. Medium Gaussian, a
medium p value balances between capturing local patterns and generalizing
to unseen data. In coarse Gaussian, a larger p value results in a smoother
decision boundary, focusing on the overall structure of the data.

By applying SVM with different kernel functions, we can explore the
effectiveness of each kernel in capturing the underlying patterns and
separating the gear fault classes. The choice of kernel and its
hyperparameters can significantly impact the classification performance. In
the subsequent sections, we will discuss the implementation details of SVM
with different kernels for gear fault classification and evaluate their
performance on the given dataset.

Results
Confusion Matrices

The performance of the SVM classifier with different kernels was
evaluated for gear fault classification using the given dataset. The confusion
matrices for each kernel have been demonstrated in Fig.4 that providing
model efficiency to predict the no-fault and missing tooth gears. Based on
the confusion matrices, the classification accuracy, precision, sensitivity, and
F1 score have been calculated and tabulated in Table 1 (for details see the
Appendix).
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Mo fault

True Class

missing tooth

No fault missing tooth
Predicted Class

(D)
Fig 4: The confusion matrices of (a) linear, (b) fine Gaussian, (c) medium Gaussian,
and (d) coarse Gaussian SVM kernels for gear fault classification

It has been observed that the linear kernel achieved an accuracy of
50.4%, indicating that it struggles to effectively separate the gear fault
classes in the original feature space. The precision and sensitivity values of
50.4% and 44.7%, respectively, suggest that the linear kernel has difficulty
in correctly identifying both the positive (faulty) and negative (non-faulty)
instances. The low F1 score of 47.4% further confirms the poor overall
performance of the linear kernel for this classification task. On the other
hand, the non-linear fine Gaussian kernel, which captures more detailed
patterns, achieved an accuracy of 66.8%. This indicates an improvement
over the linear kernel, suggesting that the fine Gaussian kernel can better
distinguish between the gear fault classes. The precision of 66% and
sensitivity of 69.2% indicate a relatively balanced performance in identifying
both faulty and non-faulty instances. The F1 score of 67.5% reflects the
overall effectiveness of the fine Gaussian kernel in this classification task.
Along with this, the medium Gaussian kernel which balances between
capturing local patterns and generalizing to unseen data, achieved an
accuracy of 66.9%. This is slightly higher than the fine Gaussian kernel,
indicating that the medium Gaussian kernel can effectively capture the
necessary patterns for accurate classification. The precision of 65.8% and
sensitivity of 70.5% suggest a good balance between correctly identifying
faulty and non-faulty instances. The F1 score of 68.1% further confirms the
effectiveness of the medium Gaussian kernel. Finally, the coarse Gaussian
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kernel, which focuses on the overall structure of the data, achieved an
accuracy of 61.5%. While this is lower than the fine and medium Gaussian
kernels, it still outperforms the linear kernel. The precision of 61% and
sensitivity of 63.6% indicate that the coarse Gaussian kernel has some
limitations in accurately identifying both faulty and non-faulty instances.
The F1 score of 62.3% reflects the overall performance of the coarse
Gaussian kernel, which is lower compared to the fine and medium Gaussian
kernels.

Table 1: Performance statistics of SVM with different kernels for gear fault
classification

Linear Fine Gaussian Medigm Coar§e
Gaussian Gaussian
Accuracy 50.4% 66.8% 66.9 % 61.5%
Precision 50.4% 66% 65.8% 61%
Sensitivity 44.7% 69.2% 70.5% 63.6%
F1 score 47.4% 67.5% 68.1% 62.3%

Receiver Operating Characteristic (ROC) Curves

ROC curves are commonly used to assess and compare the performance
of binary classification models. In the context of gear defect classification
using SVM with multiple kernels, ROC curves provide a visual
representation of the trade-off between true positive rate (TPR) and false
positive rate (FPR) at different classification thresholds. The ROC curves for
the SVM classifiers with linear, fine Gaussian, medium Gaussian, and coarse
Gaussian kernels are presented in Fig. 5. The curves plot the TPR against the
FPR as the classification threshold is varied. The diagonal line in the ROC
figure illustrates the performance of a random classifier, which has an equal
chance of identifying an occurrence as positive or negative. A classifier with
a ROC curve above the diagonal line indicates better performance than
random guessing, while a curve below the diagonal line suggests worse
performance.
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Fig 5: ROC curves of (a) linear, (b) fine Gaussian, (c) medium Gaussian, and (d)
coarse Gaussian SVM kernels for gear fault classification
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From the ROC curves in Fig. 5, we can observe that all the SVM
classifiers with different kernels perform better than random guessing, as
their curves are located above the diagonal line. The medium Gaussian
kernel (Fig. 5¢) and the fine Gaussian kernel (Fig. 5b) show the best
performance, with their curves being the furthest from the diagonal line and
closer to the top-left corner of the plot. It indicates that these kernels achieve
a high true positive rate while maintaining a low false positive rate. Another
typical parameter for quantifying classifier performance is the area under the
ROC curve (AUC). A higher AUC value suggests improved classification
performance. From the ROC curves, it appears that the medium Gaussian
and fine Gaussian kernels would have higher AUC values compared to the
linear and coarse Gaussian kernels.

Discussion

Evaluating the SVM classifiers with different kernels for gear fault
classification using confusion matrices and ROC curves provides valuable
insights into their performance and suitability for the task at hand. The linear
kernel's poor performance, as evident from its confusion matrix and ROC
curve, suggests that the gear fault classification problem is not linearly
separable in the original feature space. This highlights the limitation of using
a linear kernel for complex classification tasks where the decision boundary
may be highly non-linear. The high number of misclassifications and the
proximity of the ROC curve to the diagonal line indicate that the linear
kernel struggles to distinguish between the different gear fault classes
effectively.

On the other hand, the Gaussian kernels (fine, medium, and coarse)
demonstrate improved performance compared to the linear kernel. The
capacity of Gaussian kernels to translate input data into a higher-dimensional
space allows for a more accurate separation of gear defect classes. The fine
and medium Gaussian kernels, in particular, show promising results, with
their confusion matrices indicating higher accuracy, precision, sensitivity,
and F1 scores compared to the linear and coarse Gaussian kernels. The ROC
curves for these kernels are further from the diagonal line and closer to the
top-left corner, suggesting a better trade-off between the true positive rate
and the false positive rate. However, it is important to note that while the
medium Gaussian kernel achieves the highest performance metrics, the
difference between the medium and fine Gaussian kernels is relatively small.
This raises the question of whether the slight performance improvement
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justifies the potential increase in computational complexity and training time
associated with the medium Gaussian kernel. Further analysis and
experimentation may be necessary to determine the optimal kernel choice,
taking into account both performance and computational considerations. The
coarse Gaussian kernel's performance, although better than the linear kernel,
falls short compared to the fine and medium Gaussian kernels. The coarse
Gaussian kernel's ROC curve is closer to the diagonal line suggesting that it
has a higher false positive rate for a given true positive rate. This indicates
that the coarse Gaussian kernel may be too simplistic to capture the complex
decision boundary required for accurate gear fault classification.

Conclusion

In conclusion, the evaluation of SVM classifiers with different kernels
using confusion matrices and ROC curves provides a comprehensive
understanding of their performance for gear fault classification. The
Gaussian kernels, particularly the fine and medium variants, demonstrate
superior performance compared to the linear kernel. However, the choice
between the fine and medium Gaussian kernels may depend on the trade-off
between performance and computational complexity. By addressing these
aspects, the gear fault classification system can be enhanced to provide more
accurate and reliable predictions, ultimately contributing to improved
maintenance strategies and reduced downtime in industrial applications.

Appendix
The standard confusion matrix with its fundamental components.
Predicted Positive Predicted Negative
TP EN Sensitivity
Actual Positive i . TP
True Positive False Negative _
(TP +FN)
Specificity
; FP N
acual Negatlre False Positive True Negative l
(TN +FP)
Precision Negalwve. Il’redu:uve Accuracy
TP ‘T‘];“" TP +TN
(TP +FP) —_— (TP +TN +FP+FN)
(TN +FN)

2xsensitivity xPrecision

F1 score = — —
(Sensitivity +Precision)
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Chapter - 2

Design of Loop Layout in Flexible Manufacturing System
using Particle Swarm Optimization Technique

Ravi Shankar Rai, Milind M. Patil, Vasim A. Shaikh, Ravi Nigam and Arnab Das

Abstract

In a flexible manufacturing system (FMS) to attain high productivity,
layout arrangement must be optimised. The design of the FMS loop layout is
covered in this document. Finding the best sequence for the machines around
a loop in order to reduce the total number of loop traversals for a family of
parts is the aim of the loop layout problem. Finding the best combination
among millions of combinations is a difficult challenge that cannot be solved
using traditional methods since optimum layout arrangements are
combinatorial problems. Thus, in order to address the loop layout problem,
this work describes the design, development, and testing of the particle
swarm optimization (PSO) technique. Since its initial proposal by Kennedy
& Eberhart in 1995, this method has gained widespread acceptance as a
solution for difficult combinatorial, non-linear, non-differential, and
complicated problems. Benchmark issues are used to validate the suggested
approach. In this case, the PSO algorithm is suggested to find the best
answer for the unidirectional loop layout design problem of several FMS
models.

Keywords: Loop layout, FMS, PSO; optimization, manufacturing system
Introduction

In modern, sophisticated production lines, flexible manufacturing
systems (FMS) are essential. These systems usually consist of a collection of
machines that are able to carry out a range of diverse tasks. These machines
are connected by an automated parts-transportation and handling
mechanism, and they are all run under the hierarchical management structure
of a standard computing system. Determining the best configuration for the
machines on the shop floor to enable optimal operation is a crucial step in
the design of a factory management system (FMS). The way the machines
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are arranged greatly influences the cost of handling materials, processing
times, and production system throughput, all of which have an effect on the
FMS's total productivity. In modern, sophisticated production lines, flexible
manufacturing systems (FMS) are essential. These systems usually consist of
a collection of machines that are able to carry out a range of diverse tasks.
These machines are connected by an automated parts-transportation and
handling mechanism, and they are all run under the hierarchical management
structure of a standard computing system. Determining the best
configuration for the machines on the shop floor to enable optimal operation
is a crucial step in the design of a factory management system (FMS). The
way the machines are arranged greatly influences the cost of handling
materials, processing times, and production system throughput, all of which
have an effect on the FMS's total productivity. The type of material-handling
device employed, such as gantry robots, automated guided vehicles (AGVs),
material-handling robots, etc., frequently dictates the machine architecture
during an FMS. When it comes to application, the most commonly used
types of machine layouts are as follows (see Fig. 1): the cluster layout based
on gantry mechanism (Fig. 1(c)), the semi-circular layout with a single
mechanism (Fig. 1(d)), the linear single-row layout (Fig. 1(a)), the linear
double-row layout (Fig. 1(b)), and the closed-loop layout (Fig. 1(e)). An
AGV moves components between the machines taking possession in each
direction in a straight line in the first two layouts (Figs. 1(a)-(b)). Once the
work's space is limited, a gantry robot is utilised, supported by the third
machine's arrangement (Fig. 1(c)). In the fourth arrangement (Fig. 1(d)), an
industrial robot that handles materials transports components between the
machines while following a semi-circular (predetermined) path with its end-
effector. In contrast, a conveyor in a closed-loop arrangement transports
parts between the machines in a single direction via a closed-loop rail.
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Fig 1: Different Forms of machines layouts in a FMS with respect to the various
types of the material-handling devices: (a) single-row layout, (b) double-row layout,

(c) cluster layout, (d) semi-circular layout, and (e) Closed unidirectional loop layout
[22]

(el

The unidirectional loop layout design issue (LLDP), or the problem of
designing loop-layout-manufacturing systems of the form depicted in Fig.
1(e), is the focus of this work. The problem has been attempted to be NP-
hard, which implies that no algorithmic programmed can answer it in
polynomial time unless P ¥ NP is proven. Unlike alternative layout
configurations, loop layouts are appealing to use for at least two reasons:
first, they require fewer material handling links to connect the machines,
which reduces their initial cost; second, they offer greater material handling
flexibility because every machine can be accessed by every other machine.
Determining the machine's order around the loop in order to maximize
certain performance parameters is the primary objective of the LLDP. The
layout design principles that are most frequently utilized center on
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minimizing material-handling expenses. Afentakis (1989) suggested
minimizing a metric known as traffic congestion in order to achieve this
goal. The number of times a certain part runs through the loop before
processing is finished is the definition of this metric. Two traffic congestion
measurements, known as MIN-SUM and MIN-MAX congestion,
respectively, are often used in the literature. While the goal of the later is to
minimise the maximum congestion among parts of the same family, the goal
of the former is to minimise the total congestion of all parts.

Literature Survey

In order to overcome the loop layout problem, Afentakis X created an
interchange heuristic and used a graph to represent the layout of an FMS.
The graph's edges show the material handling system's connecting ties, while
nodes stand for the individual steps in the process. The formulation of
quadratic assignment problems (QAPs) has been introduced by Kaku and
Rachamadugu @ as a means of solving loop and linear layout problems in
FMS. In order to solve the unidirectional loop network problem, Kouvelis
and Kim [ created a branch and bind (BB) process and a heuristic. They
also designed a decomposition method to handle large work flow matrices.
Leung 19 has created a graph theory with heuristic support that builds a
layout for the matter's linear programming relaxation. The MIN_SUM and
MIN_MAX goals were taken into consideration when they created the
integer programming (IP) formulation to solve the unidirectional loop
architecture problem. The loop layout drawback has been solved by Cheng et
al. 1 by the development of a hybrid genetic algorithm and neighbourhood
search. To solve the simplex loop network layout drawback, Tansel and
Bilen [l have designed two heuristics called MOVE and
MOVE/INTERCHANGE. While the second heuristic relied on pairwise
interchanges as well as positional moves, the first one was mostly dependent
on positional moves. A three-phase IP model was used to address an FMS
loop layout problem that included scheduling and machine layout, as
modelled by Potts and Whitehead 7. Assigning tasks to machines in the
first phase helps to balance the workload on the machines. In order to reduce
the overall number of circuits, the second phase minimizes intermachine
travel, and the third phase distributes the places around a conveyor belt loop.
Lee et al. 2 suggested BB techniques in addition to heuristics to address the
unidirectional loop layout issue. To overcome the min—max loop layout
problem, Bennell et al. ™3 suggested an iterated decent and tabu search
strategy as well as a randomised insertion approach. A heuristic method for
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solving the unidirectional loop network based on a formulation of linear
programming that makes use of the flow matrix was provided by Malakooti
141 The different formulations and techniques that have been developed to
address the unidirectional cyclic layout problem have been discussed by
Altinel and Oncan 8. In order to handle combinatorial issues with
permutation property, Nearchou 2 devised a mapping technique for
encoding the floating-point chromosomes and employed a differential
evolution algorithm (DEA) to solve the loop layout problem. Since the loop
layout problem is of the NP hard type 2, non-conventional optimisation
methods have been used to address this kind of issue. An attempt to apply
the PSO algorithm for creating a manufacturing system with a loop layout
has been made in this work. One congestion measure that is regarded as an
aim is the MIN_SUM. In order to replicate actual production facilities, the
layout configuration that takes into account machines with uneven clearance
between them is taken into consideration.

Formulation of the LLDP

LLDP considerations a group of processing machines organized in a
very control system, with zero being a loading & unloading platform, and a
group of M elements that are moved round the loop in exactly unidirectional.
The elements move in & out the system through the loading & unloading
platform. Every half is to be operated on variety of k machines in a particular
order; which is often known as the part-route. Let us suppose a
neighbourhood p (p = 1; ... ; M) should 1st be operated on machine j and so
on i™ machine. If the j machine positioned within loop is under that of it"
machine, then the half should pass the load & unloading platform. This is
often known as a reload of part p. the entire range of reloads required to
finish the process of |a particular part aided a live for holdup of the assembly
system. An answer to the LLDP conform to a particular loop layout of
machines, i.e., for a custom arrangement of machines within the loop.
Hence, a loop layout will be delineating by a permutation and combination
of the various machines (mi, my . .. m,). The target is to search out the
optimal layout that diminishes the hold up within the loop exposed to a
group of applied constraints associated with the part-routes demand. Two
performance measures are typically applied for the analysis of a LLDP:

i)  MIN-SUM, within that the target is that the step-down of the entire
congestion of elements within the system, that is the step-down of
the entire range of reload to all elements.
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i) MIN-MAX, within that the try is to attenuate the most reload from
the elements of constant family. This method results to a lot of
optimal congestion among elements. For clarification consider an
example of 7-machines & 3-parts LLDP.

Let us suppose that the part-routes are:
Partl:5—>7—-6—>3—>2.
Part2:2 -3 —-55—6—-57—l.
Part3:7—-1-52—-3—-54—-55-6.
Hence, the layout is (1-2-3-4-5-6-7).

That means a meeting of machines inside a very loop with first machine
within the 1st location, then followed by second machine, then by 3rd
machine, etc., corresponding to a complete range of five reloads mainly,
checking the required part-routes given higher than, part 1 needs 3 reloads;
part 2 needs reload, and part 3 needs 1 reload.

The planned layout is (7-1-2-3-4-5-6).

Diminishes the entire range of reloads to 4, generating the subsequent
tasking of reloads,3 reloads for part 1, 1 reload for part 2, and zero reload for
part 3.

So, the layout is (5-7-1-6-4-2-3).

Diminishes most reload among elements generating 1 reload for part 1,
2 reloads for part 2, and 2 reloads for part 3.

Problem Descriptions

A common layout in FMS is the loop layout in which the machines are
arranged in a loop network and materials are transported in unidirectional.
An important step in designing the unidirectional network is the
determination of the ordering of the machines around the loop. A loop layout
design can be represented as permutation of machines (my, m...m,) with a
prefix of loading/unloading station 0. Each part is characterized by its part
route, the sequence of machines it must visit to complete its processing. For
a given part, suppose processing on machine j immediately follows
processing on machine i. If the position of machine j is lower than that of
machine i, then the part must cross the loading/unloading station, which is
called a reload. The number of reloads necessary to complete the processing
for a part is defined as a measure of traffic congestion . Afentakis ™M
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suggested the use of traffic congestion as a measure to evaluate the loop
layout. The congestion is defined as the number of times a part traverses the
loop before its processing is completed. The two kinds of congestion
measures used in loop layout design are MIN_SUM and MIN_MAX. A
MIN_SUM problem attempts to minimize the total congestion of all parts
while a MIN_MAX problem attempts to minimize the maximum congestion
among family of parts.

Problem Formulation
The objective of the problem formulated as:
1. Minimization of average cost of best loop layouts
Cost(S) = YN, reload;

Where,
S is the best loop layout combination.
Reload is the crossing through loading/unloading station.
N is number of parts

2. Minimization of average percentage solution effort (%SE) spent by
algorithm

SE(%) = (=222L) 4 100

NEtotal

Where,
NE,.: 1S the number of evaluation to get the best result.
NE;,tq: 18 the total number of evaluations.
3.  Minimization of congestion for each part
MP; = reload;
Where,
MP; is the ith part of machine MP.
Particle swarm optimization (PSO).

PSO may be a stochastic optimization technique lies on population and
represented on the social behaviours discovered in animals or insects, for
example flocking of birds, schooling of fish, and animal herding. One vital
tool of a successful swarm intelligence model is PSO that was invented by
Russell Eberhart, an electrical engineer, and James Kennedy, a social
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psychologist, in 1995. Originally PSO won’t to solve non-linear continuous
optimization issues; however, a lot of recently it's been employed in several
sensible, real-life application issues. PSO attracts inspiration from the social
science behaviour related to flocking of birds. It’s a common observation
that birds will fly in massive teams with no chance of collision for very long
travel, creating use of their training to keep up an optimal distance between
themselves & neighbours.

PSO Algorithm
Step 1: Initiate n no of particles at random.

Step 2: Find fitness value of every particle. And apply the condition; if
the fitness value is optimum than the best fitness value (pbest) in past. Set
the present value as the next pbest.

Step 3: Select particles with the best fitness value of whole particles as
the gbest.

Step 4: For every particle, calculate particle speed in line with the
formula.

Vi []1=Vk[]+C 1rl (Puoest —Px) +C2 r2 (Gkpest — Px)
Where

V[ ] represents the particle speed.

Pk represents that the current particle.

Proest represents that the personal better of particle

Gunest IS that the global better of particle

r & rp is a random number lies in the interval (0 and 1), Assume r;
=0.78 r,=0.48

C4, C are learning factors (or) social and cognitive parameters. Usually
C1 = C,=[0-4] {considering C,= C,=1}.

Step 5: Velocities of particles on every dimension are added to a most
speed VVmax, the rate on the factor is restricted to Vmax.

Step 6: Now terminate if an optimal value is reached. Otherwise, move
to Step 2.
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Flow Chart of PSO
Fig. 3 Flow chart of PSO
Experimental setup
Model Building

Simulation is defined as the advance technique of building a real time
problem abstract, i.e., logical and conceptual model of the system describing
the internal behaviour of their related components and all complex
interactions. The outline pattern of changes in the behaviour of system can
be observed against the obtained effects. This propagates to great
understanding of actual phenomenon of the system operations and
environment and thus the areas which required potential changes are
recognized.

Table 1: FMS Model building (M-model)

S. No. Description M-1 M-2 | M-3| M-4
. Number of machines 10 15 20 30
2. Number of parts 3 9 5 10
3 Layout considered yout | layout Jiayout| layout
Transportation cost per Unit (Rs) 1 1 1 1
5. |Loading and unloading cost per unit (Rs) 1 1 1 1

Data Set Details for FMS Layout

A production environment 2% 22 with the detailing of the layout of FMS
is shown in Table 2. The details of the required data of batch varieties and
No. of parts and the required sequence for each part are enlisted in the Table
2. The details of the required input taken such as required sequence with
batch sizes of machines and parts from the reference paper are also tabulated
in the Table 3. These tabulated data are taken as an input values for the FMS
models and then by taking the considerations of all the assumptions, apply
the PSO codes for generating the combinations of the machines sequences
finally, the output values and graphs are plotted.

Table 2: Outline of Production system [2]

Layout No. of No. of No. of Load/Unload
Pattern Machines Batches operations Stations
Loop 10 10 10 2
Loop 15 15 15 2
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Loop

20

20 20 2

Loop

30

30 30 2

Table 3: Required sequence with batch sizes of machines and parts 24

S TOt?‘I Total| Part Required sequence of machine
No. [ machines |parts [number
1 10 3 1 2-1-6-5-8-9-3-4
2 10 3 2 10-8-7-5-9-6-1
3 10 3 3 9-2-7-4
1 15 9 1 4-2-5-1-6-8-14-9-11-3-15-12
2 15 9 2 3-2-15-14-11-1-7-10-4-5-13-6-9
3 15 9 3 5-6-11-15-2-12-3-4
4 15 9 4 10-9-4-14-2-3-15-8
5 15 9 5 11-2-4-14-5-3-15
6 15 9 6 8-10-12-11-15-13-1-14-4-5-3
7 15 9 7 5-11-10-3-7-13-8
8 15 9 8 7-3-2-8-4-10-6-15-13-9-1
9 15 9 9 11-13-3-1-12-14-4-8-9-2
1 20 5 1 4-2-3-12-1-9-16-18-5-8-20-15-14-6-11
2 20 5 2 10-9-1-3-18-17-5-6-2-11-4
3 20 5 3 17-11-6-8-7-15-16-9-1-20
4 20 5 4 14-17-11-3-16-5-13-18-20-19-12-10-6-8-15
5 20 5 5 6-18-8-4-2-7-5-9-14-19-1-20-10-16-11-15-13-12
1 30 10 1 6-3-4-18-5-1-14-24-26-7-11-30-23-21-13-27-9-16-17-2-
25-8-15
5 30 10 5 17-9-11-8-10-22 2f5-11:)’2-22$?6-2?i72-12825 16-4-20-26-18
3 30 10 3 13-2-6-29-21-3-14-24-12-115;-17-8-1-22-28-10-7-30-20-
4 30 10 4 7-2-6-11-21-8-16-30-1
5 30 10 5 3-17-1-2-20-22-8-6-26-19-14-11-15-12-7-16-21-10-28-
23-18-4-27-24-25-13-30-9-5
6 30 10 6 30-9-2
7 30 10 7 15-9-30-19-12-3-6-5-8-14-7-28-23-1-29-24-27-2-13-4-
26-16-11-10-25-21-22-20-18
8 30 10 8 7—19—5—4—9—16—3—14—28—13—31&—2—21—10—17—22—26—23—29—
9 30 10 9 21-4-1-6-11-22
10 30 10 10 12-6-17-15-13-30-26-18-14-9-7-11-23-2-4-25-24
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Implementation of PSO for Ackley and Rosenbrock Function

There are variety of benchmark check functions for up to date the
optimization algorithms like as GA & evolutionary computation.
Rosenbrock operate may be the best example of nonlinear operate having
powerfully coupled system variables and is an actual challenge to any
optimization formula attributable to its tardy convergence for many
optimization strategies. | actually have used the Ackley operate and
Rosenbrock operate to verify my PSO codes and once verification | actually
have applied my problem once the validation of the proposed coding is done.

Output Plots of Ackley Function

PSO codes in applied in the MATLAB on the Ackley function then the
generation of global minima of Ackley function provides the validation of
the algorithm that is going to be used for the layout optimization of FMS in
the dissertation. Here 3000 iterations are provided to check the validity and
from the output plot we can see that the global minima i.e. zero is achieved
after 1500 iterations. Total elapsed time for 3000 run is 33.75 seconds.
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Fig 4: Output Plot between objective value and no. of iterations for Ackley function
Output plots of Rosenbrock function

PSO codes in applied in the MATLAB on the Rosenbrock function then
the generation of global minima of Rosenbrock function provides the
validation of the algorithm that is going to be used for the layout
optimization of FMS. Here 3000 iterations are provided to check the validity
and from the output plot we can see that the global minima i.e. zero is
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achieved after 40 iterations. Total elapsed time for 3000 run is 34.85
seconds.
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Fig 5: Output Plot between objective value and no. of iterations for Rosenbrock
function

The output plots of the Ackley function PSO codes and the Rosenbrock
function PSO codes are shown above by which the optima of the both
functions lies at x=0; therefore the algorithm is correct and accurate to apply
on the objective functions of the FMS Models. Since the validation of the
PSO algorithm and their codes are done by the help of standard functions
such as Ackley function and Rosenbrock function. Therefore, the PSO codes
can now implement on the FMS models.

Parameter Setting

To apply any method for evaluating the system it is extremely necessary
to repair some numerical coefficients for the response of parameters. PSO
owing to the power of global optimization depends mostly on setting of
those parameters. The optimal valves of parameter are fixed on trial and
error basis which is listed below.

e  Size of population =100.
e Velocity factors=C1=C2=2.
e  Termination criteria=300 iterations.

For every test problem, the rule is applicable to run up to a most of
30000 no. of evaluations. The analysis conforms to a single computation of
target function for the candidate solution.
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Results and Discussions

The PSO Algorithm is tested over the randomly generated test problems
given in Nearchou 4. The model buildings of four different models are
tabulated and the required machine sequence for the four test problems are
given in table-3. The proposed algorithm is tested on four test problems:

For Model 1-10 Machines and 3 Parts

The PSO codes are now applied to the FMS model-1 in which 10
machines and 3 parts are considered and parameters are calculated by the
100 evaluations. The following results are tabulated below. The applied code
is dynamic that is we can apply the no. of evaluation and the model
parameters to find the output of the objective functions. As the no. of
evaluations increases, accuracy of the result is also increases.

Table 4: Output parameters of model-1

S. No. Calculated Parameters Value
1. Minimum cost 3Rs
2. Optimal sequence 10-8-9-3-2-7-4-1-6-5
3. Total evaluation 100
4. Congestion for each part 1-2-0
5. Solution Effort (%) 1%

Plots of Objective Function Results for Model-1
Plot of No of Iterations vs Cost

Figure shows the output plot of the model-1 in which the plot is produce
between no. of iterations and the cost. From graph, we can see that there is a
constant increment in cost for the increased no. of iterations corresponding to
the 3Rs. So we can say that the optimum cost is 3 Rs.
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Fig 6: No. of Iteration vs cost graph
Plot of Total Evaluation vs Optimal Cost

Figure shows the output plot of the model-1 in which the plot is produce
between no. of evaluations and the best cost. And the best cost achieved in
each evaluation is also plotted and mark by red star. From graph, we can see
that there is a different best cost value for each evaluations and minimum
cost achieved by the some evaluations are 3Rs, so this cost (3Rs) is the
optimal cost for model-1.
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Fig 7: Total evaluation Vs Best Cost
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For Model 2-15 Machines and 9 Parts

The PSO codes are now applied to the FMS model-2 in which 15
machines and 9 parts are considered and parameters are calculated by the
100 evaluations. The following results are tabulated below.

Table 11: Output parameters of model-1

S. No. Calculated Parameters Value
1 Minimum cost 24 Rs
2 Optimal sequence 7-4-5-11-10-3-15-13-2-1-6-8-12-14-9
3 Total evaluation 50
4 Congestion for each part 2-4-3-3-2-3-1-3-3
5 Solution Effort (%) 54%

Various Plots of Objective Function Results
Plot of No of Iterations Vs Cost

Figure shows the output plot of the model-2 in which the plot is produce
between no. of iterations and the cost. From graph, we can see that there is a
constant increment in cost for the increased no. of iterations corresponding to
the 24Rs. So we can say that the optimum cost is 24 Rs.
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Fig 8: Iteration Vs cost graph
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Figure shows the output plot of the model-2 in which the plot is produce
between no. of evaluations and the best cost. And the best cost achieved in
each evaluation is also plotted and mark by red star. From graph, we can see
that there is a different best cost value for each evaluations and minimum
cost achieved by the some evaluations are 24Rs, so this cost (24Rs) is the
optimal cost for model-2.
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Fig 9: Total evaluation Vs Best Cost
For Model-3 = 20 Machines and 5 parts

The PSO codes are now applied to the FMS model-3 in which 20
machines and 5 parts are considered and parameters are calculated by the
100 evaluations. The following results are tabulated below.

Table 12: Output parameters of model-1

S. No. | Calculated Parameters Value
1. Minimum cost 17 Rs
. 10-3-9-14-6-13-19-16-18-17-5-12-8-4-1-20-2-11-
2. Optimal sequence 7-15
3. Total evaluation 300
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4. | Congestion for each part 3-3-3-4-4

5. Solution Effort (%) 8.33%

Various Plots of Objective Function Results
Plot of No of Iterations Vs Cost

Figure shows the output plot of the model-3 in which the plot is produce
between no. of iterations and the cost. From graph, we can see that there is a
constant increment in cost for the increased no. of iterations corresponding to
the 17 Rs. So we can say that the optimum cost is 17 Rs.
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Fig 10: Iteration vs cost graph
Plot of Total Evaluation Vs Optimal Cost

Figure shows the output plot of the model-3 in which the plot is produce
between no. of evaluations and the best cost. And the best cost achieved in
each evaluation is also plotted and mark by red star. From graph, we can see
that there is a different best cost value for each evaluations and minimum
cost achieved by the some evaluations are 17 Rs, so this cost (17 Rs) is the
optimal cost for model-3.
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Fig 11: Total evaluation Vs Best Cost
For Model-4 = 30 Machines and 10 Parts

The PSO codes are now applied to the FMS model-4 in which 30
machines and 10 parts are considered and parameters are calculated by the
100 evaluations. The following results are tabulated below.

Table 13: Output parameters of model-1

S. No. | Calculated Parameters Value
1. Minimum cost 57 Rs
2 Optimal sequence 26-23-21-10-12-25-3-17-13-7-27 -9-8-16-2-30-
0-19-1-6-18-29-14-11-22-24-5-15-28-4
3. Total evaluation 300
. Congestion for each part 8-8-4-1-9-1-11-7-1-7
5. Solution Effort (%)

Page | 38



Research Methodologies in Engineering and Applied Science
Various Plots of Objective Function Results
Plot of No of Iterations Vs Cost
Figure shows the output plot of the model-4 in which the plot is produce

between no. of iterations and the cost. From graph, we can see that there is a

constant increment in cost for the increased no. of iterations corresponding to
the 57 Rs. So we can say that the optimum cost is 57 Rs.
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Fig 12: Iteration Vs cost graph

Figure shows the output plot of the model-4 in which the plot is produce
between no. of evaluations and the best cost. And the best cost achieved in
each evaluation is also plotted and mark by red star. From graph, we can see
that there is a different best cost value for each evaluations and minimum

cost achieved by the some evaluations are 57 Rs, so this cost (57 Rs) is the
optimal cost for model-4.
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Conclusion

In this paper, a PSO based approach is successfully applied on obtaining
the optimal solution of unidirectional loop layout design problem. The
proposed algorithm is tested on different combinations of machines to
validate the performance of algorithm, and the obtained results are very
promising. Random combination approach is used in this report to remove
the problem of exploitation. In this report tests have been performed for
maximum of 300 evaluations while many researchers performed tests for
30000 or even more than 50000 evaluations. As the number of evaluations
will be more, probability of getting optimum combination will be more. As a
future work the PSO algorithm can be extended to solve the loop layout
problem based on MIN_MAX criteria and bi-directional loop layout
problems.
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Chapter - 3

Parametric Observation of Surface Roughness and Burr
Formation on Mild Steel using Micro Milling Operation

Prince Anand, Bikash Panja, Ranjan Kumar and Arnab Das

Abstract

Due to the trend shifting the production towards miniaturization, micro
milling technology emerged as a tool. Burr formation and surface roughness
are crucial surface quality attributes that vary widely according to machining
conditions used. In this paper, micro slot milling operations were carried out
in order to identify the effects of feed rate, cutting speed on surface
roughness and burr formation. Depth of cut was constant throughout the
experiments. Three cutting speeds; i.e., 12000rpm, 18000rpm and 24000rpm
have been used as cutting speed. The best roughness value of 17.828 um was
observed using profilometer with 24000 rpm, 2mm/sec feed and 30 mm
depth of cut.

Keywords: High speed micro milling, burr formation, surface roughness,
exit burrs

Introduction

With the global trend shifting towards miniaturization, there is a rising
demand for micro machine tools capable of cutting intricate 3D geometries
and micro parts. A very effective precision machining technique called
micro-milling is used to create components containing microstructures, such
as complex three-dimensional (3D) surfaces at the microscale. The micro-
milling tool's cutting-edge diameter usually ranges from 1 um to 1000 pm,
while in traditional milling operations, the cutting-edge diameter is more
than 1000 um ™. Micro milling is a type of milling where the uncut chip
thickness is similar to the size of the cutting-edge radius, or the grain size of
the material being cut. The cutting tools used in micro milling are very
small, typically with diameters ranging from 25 micrometres to 1 millimetre.
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These tools are much smaller than those used in conventional milling
processes . In high-speed end milling, the cutting speed and feed rate affect
the surface finish and integrity of the workpiece. Although CNC end milling
automation is very advanced, there's still room for improvement. Optimizing
machining parameters like cutting speed (Vc) and feed rate (f) is important
to enhance the surface quality and integrity of the final product. High-speed
machining offers benefits such as low cutting forces, effective heat
dissipation through chip removal that reduces workpiece distortion, and
improved part precision and surface finish %, Productivity, dimensions,
topography and quality surface finishing of micro-machining are affected by
several factors such as microstructure, chip formation, tool wear, cutting
forces, etc. The analysis of these factors has generated numerous research.
Broad areas of industrial applications of micro components include
automotive  and  transport  systems, information  technology,
telecommunication, health care technology and biotechnology. Specific
applications include microscale fuel cells, micro moulds, deep X-ray
lithography masks, fibre optics, micronozzles for high temperature jets and
microelectronic chips -1, Because of the diverse micro-applications, a wide
range of engineering materials is necessary, such as aluminium alloys,
stainless steel, titanium, brass, plastics, ceramics, and composites. Machine's
cutting parameters like speed, feed rate, depth of cut, environment, and
cutting force can increase surface roughness. During manufacturing, the
shape, size, and accuracy of the product are crucial, which can be achieved
through material removal by cutting, either physically or chemically. NC
vertical end mills are widely used in modern businesses because they can
quickly remove material and create complex surfaces with high precision "1,
Various studies have been made on the surface roughness, burr formation in
end milling using different materials, cutting tools, and experimental and
optimization methods. Ghani et.al performed the milling operation on AlSI
H13 hardened steel using TiN coated P10 carbide insert on end milling
Cincinnati Milacron Sabre 750 VMC and analyse the resultant cutting force
and surface finish [, Norcahyo etal conducted the experiment using
ASSAB XW-42 tool steel and solid carbide tool with End milling CNC
milling YCM MV 66A for surface roughness and Tool flank wear, material
removal rate 1. AISI D2 tool steel, coated tungsten carbide inserts, end mill
cutter milling Machining center used to perform the experiment and
observed the maximum milling temperature, work surface roughness and
machining force 1%, Mantle and Aspinwall studied the surface integrity
produced by end mill tool using a Taguchi orthogonal array 4. Wang and
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Chang analysed the influence of cutting conditions and tool geometry on
surface roughness during slot end milling 4. Lou and Chen described a new
approach for recognition systems to predict surface roughness %, Tsai et al.
developed an in-process based recognition system to predict the surface
roughness of machined parts in the end milling process 4. Bajpai. V et al.
focused on the characterization of the burr formation in high-speed micro
milling operation. Influence of various process parameters, viz., spindle
speed, feed rate, depth of cut, tool diameter and number of flutes of the
micro milling tool has been analysed on the burr size and on the quality of
the machined surface via measuring the surface roughness [61,

The primary objective of the research presented in this paper is to
examine how various cutting parameters such as feed rate and cutting speed
affect the final product, which includes surface quality and burr formation
when mild steel is micro milled. Finding the ideal combination of parameters
is another goal of this research.

Workpiece Material

Mild steel is a general-purpose material that can be found in most
industries. Mild Steel is popular because it's affordable and offers strength,
hardness, wear resistance, toughness, and moderate flexibility, making it
suitable for many applications. It's used in industries like automobiles for
axles, bearings, and gears, in constructing vehicle frames, in shipbuilding
and repairs, and for making sheet metal and nuts and bolts [,

(b) Workpiece

Fig 1: (a) The 2-flute end mill of shank diameter 3 mm and cutting tool of 1Imm
diameter. Fig. 1 (b), (c) The workpiece of width 8 mm and length 28 mm respectively
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Experimental Set up

The Indian Institute of Technology (ISM) in Dhanbad, India, has the
source of the semi-high speed micro milling machine tool (V60) as shown in
the figure 1. This micro machining centre is developed at IIT ISM Dhanbad.
These self-designed and built machine tools have a high spindle speed
(60,000 rpm) and positional precision. In order to reduce deflection and
vibration, the machining centre’s bridge-like structure was built using
dynamic studies and modal frequency response analysis. Granite is used
throughout the whole construction to adequately dampen unwanted
vibration. The machining centre can manufacture slots, macrotextures and
three-dimensional features with excellent repeatability and positional
precision. The experiments are carried out on this V60 setup. The diameter
of the two fluted, coated carbide micro milling tool was 1000 um. The
experiments were performed without any coolant or lubricant. The
applicable cutting parameters of the experiment have been considered before
conducting the machining operation. The machine parameter is set according
from the manufactured as shown in Table 1. To discuss the effects of the
relationship between depth of cut and feed rate on the cutting force and
surface roughness features, two experiments was conducted.

Fig 2: Experimental Setup V60
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Table 1: Process parameters

Sr. No. |Speed (rpm) | Feed (mm/sec) | Depth of cut (um) | Tool diameter (mm)
1. 12000 2 30 1
2. 18000 5 30 1
3. 18000 2 30 1
4. 24000 2 30 1

The workpiece material utilized in this project is mild steel with
workpiece of width 8mm and length 28mm respectively. It offers excellent
strength, hardness, wear resistance, toughness, and moderate flexibility,
making it suitable for many applications. During the actual machining
process, there are increased expectations for both the cutting and machining
quality of mild steel material. Sample is cut using Wire electric discharge
machining that is set up in the IIT ISM Dhanbad. Required flatness of
sample is achieved by grinding machine. Flat end mill cutter used for
creating micro slots on the workpiece.

Methodology

Start

U

Sample Preparation

U

Experiment on V60 Setup

U

Observation using 3D profilometer

4

Result

Fig 3: Flowchart of the methodology

Fig. 3 describes the methodology flowchart. In the micro-milling
experiments, 1000pum diameter two-flute end mill tool was utilized. Cutting
tools were TiAIN coated, and helix angle was 20¢. The total length and shaft
diameter of cutting tool were 38 and 3 mm, respectively. A new cutting tool
was used for each experiment. The micro-milling experiments were carried
out at micromachining center (V60 setup). After that observation is done on
3D profilometer (ZYGO 9000 view). To minimize the deflection effect, the
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distance to the tool tip from the tool holder (overhang length) was fixed at 20
mm during all experiments.

Result and Discussion
Surface Roughness

The quality of the surface after machining depends a lot on the cutting
parameters and the shape of the tool. If the wrong parameters are used, like
dull tools, too fast feed or depth, improper speeds, coolant, or wrong tool
hardness, the surface quality will be affected. So, we selected the cutting
parameters based on the recommended values for the cutting tool's
manufacturer. Surface roughness is the most important process output yet the
most difficult to analyse in micro scale. The quality of a machined surface is
usually determined by the surface roughness and the surface roughness of
workpieces was measured by the 3D profilometer. In this study, a contactless
method of surface roughness measurement method was used to analyse
machined surfaces and average surface roughness (Ra) was used as a
roughness parameter since Ra is the most extensively used index for
determining surface quality.

Table 2: Experimental result

Sr. No. Speed Feed Depth of Ra Rz _Burr
(rpm) | (mm/sec) cut (um) (um) (um) Height (um)
1. 12000 2 30 31913 | 1.064 9.537
2. 18000 5 30 37.314 | 0.843 7.635
3. 18000 2 30 21.601 | 1.129 6.738
4, 24000 2 30 17.828 | 0.256 29.392

The roughness value Ra, Rz is observed using 3D profilometer. Fig. 4
(a) shows the roughness value at 12000 rpm and feed 2mm/sec. When the
speed and feed increase the roughness value (Ra) increases Fig. 4(b). Fig.
4(c) indicates 21.601, the Ra value at 18000 rpm and 2mm/sec feed. Fig.
4(d), when machining performed at higher speed and value of roughness is
decreases.
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Fig 4: Surface roughness graph
Bur Formation
Burr gets formed when the cutting tool plastically deforms the uncut
chip material instead of removing them. Thus, it can be defined as an
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unwanted plastic deformed material that remains stick to the workpiece after
machining or shearing operation. Since the size of burrs is very less in
comparison to macro machining, their removal is very difficult and
challenging. Fig. 5 (a), (b), (c), (d) show the three-dimensional picture of the
machined surface. In these images, burr clearly observed. The depth of cut
constant for all the cutting speed.

(a) v=12000rpm, f= 2mm/sec (b) v=18000rpm, f= 5mm/sec

(c) v=18000rpm, f= 2mm/sec (d) v=24000rpm, f= 2mm/sec

Fig 6: (a), (b), (c), (d) represent the burr height on machined surface. The 2D surface
topography has been shown in this Figure for all machined samples
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Fig 6: Burr height on machined surface
Conclusions

Slot end milling operation on mild steel were carried out with V 60
cutting tools. The surface roughness and burr formation were analysed to
identify the effect of feed rate, cutting speed and depth of cut and the
following conclusion can be made:

At the variation of cutting speed, the roughness profile for cutting tool
shows a pattern which is when the cutting speed increases the roughness
value (Ra) decreases. The depth of cut is constant throughout the
experiment.

It was observed that at same cutting speed and increasing feed rate the
roughness value increases. all analysis techniques delivered similar results
such that the feed rate is found to be most significant factor affecting surface
roughness.

Based on the measurement it is observed that burr height at 12000 rpm
is 9.537um, at 18000 rpm, 5 mm/sec is 7.635 pum, at 18000 rpm, 2mm/sec is
6.738 um and at 24000 rpm is 29.392 pm.
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Assessment of Titanium Machining Employing Wire
Electrical Discharge Machining through an Artificial
Intelligence (Al) based Optimisation

Debal Pramanik, Arnab Das, Ranjan Kumar and Bikash Panja

Abstract

In non-traditional machining, wire electrical discharge machining is a
fast-growing system. Its capabilities are so broad that they can be applied to
almost every field of conductive material machining as well as production,
nuclear reactors, medical trades, and aeroplanes. However, the WEDM
technique's actual application is severely hampered by the difficult problems
of small material removal rate (MRR) and high surface roughness (R.a).
Parameter optimisation is the only way to improve process efficiency. The
present investigational effort examines the effects of several process
parameters on the MRR and surface roughness of titanium grade 12 alloy
during WEDM process. It does this by using response surface methodology
(RSM) and Al-based particle swarm optimisation (PSO). To create the
design of experiment (DOE), a study is undertaken utilising an experimental
approach known as RSM based central composite design. The Al-based
experimental validation of the suggested models shows that low surface
roughness (Ra) and the required MRR may be obtained by adjusting the
cutting parameters. The ideal level of parametric settings for each of the
different machining conditions has been measured.

Keywords: WEDM, Titanium grade 12, TLBO, MRR, R,
Introduction

Wire electrical discharge machining (WEDM) technology has advanced
significantly in recent years to fulfil the demands of numerous industrial
sectors, particularly the precision die business %1, By creating a succession
of sparks between the workpiece and a wire electrode, a thermoelectric
technique called wire electrical discharge machining removes material from
a workpiece by causing erosion. A thin film of dielectric liquid, often
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deionised water, keeps the sparks apart and is uninterruptedly supplied to the
machining zone in order to remove the worn-out particles. The wire's
velocity is precisely adjusted using numerical control to provide the desired
three-dimensional configuration and workpiece precision -1,

Harder materials are preferred in engineering applications because they
can prolong the service life of components by improving surface properties
like hardness and abrasion resistance 1%, Because of their superior strength
and resistance to corrosion, titanium alloys are preferred; yet, standard
methods of machining them provide significant challenges. Additionally, in
order to solve this issue, the nonconventional machining technique has been
implemented for the processing of difficult cuts. One of the non-traditional
machining techniques that results in a smaller heat-affected zone and more
precise machining is the WEDM process [1*12 It is common practice to
employ this WEDM for intricate and challenging projects. This can be used
to process highly corrosion-resistant materials, such super alloys, for use in
aerospace, marine, and high-temperature applications.

Titanium and its alloys are considered valuable materials in the
scientific world due to their immense potential in various industries such as
automotive, biomedical, shipbuilding, aerospace, and chemical. Titanium-
based materials has very desirable attributes, such as an exceptional
significant toughness, strength-to-weight ratio and exceptional corrosion
resistance. Titanium-based materials are utilised in various industries such as
aircraft manufacturing, aerospace engineering, sports equipment production,
medical device fabrication, cryogenic storage, high-temperature chemical
manufacturing, marine applications, and heat exchanger production.
Consequently, researchers have shown interest in examining the ability to
machine titanium alloys [%. Titanium Grade 12 exhibits exceptional
durability, resilience, flexibility, weldability, and retains its excellent
strength even under extreme temperatures. The exceptional ductility of this
alloy, which is maintained at both elevated and reduced temperatures,
renders it highly advantageous for a wide range of uses. These activities
encompass hydrometallurgical operations, heat exchangers, chemical
manufacture at high temperatures, aerospace applications, and the maritime
industry. Titanium Grade 12's exceptional corrosion resistance makes it a
perfect option for manufacturing equipment that is susceptible to crevice
corrosion. Therefore, Titanium grade 12 (Ti Gr 12) is being used as the
material for the workpiece in this experiment.
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Mohanty et al. 4 have examined the impact of three different tool
electrodes, namely copper, brass, and graphite, on the machining
characteristics of the EDM method applied to Inconel 718. The authors
asserted that the choice of electrode material is exceedingly significant and
accountable for enhancing machining efficiency. Aggarwal et al. ™ have
employed parametric modelling and optimisation techniques to study the
wire electrical discharge machining (WEDM) of Inconel 718 with a brass
wire electrode. They have utilised RSM for their analysis. The responses
taken into account were cutting rate and surface roughness. The pulse
duration was determined to be the primary factor affecting the cutting rate
and roughness. Kuriakose and Shunmugam 61 have conducted experiments
using titanium 15 alloys (Ti-6Al-4V) and utilised a data-mining technique in
order to investigate the impact that different input parameters of the WEDM
process had on the cutting speed and surface roughness. By utilising
nonlinear regression analysis, Mahapatra and Patnaik 71 were able to
establish connections between a variety of process parameters and responses,
such as MRR, surface roughness, and kerf. Subsequently, they utilised a
genetic algorithm in order to optimise the WEDM process with multiple
targets. This paper presents the process of creating a model and using it to
optimise the parameters for WEDM. Experiments are performed to validate
the model and favourable outcomes are achieved. Omarov et al. I8l have
conducted a study on the material removal rate (MRR) and surface
roughness of micro wire electrical discharge machining on the Ti-6Al-4V
alloy. A Taguchi design was utilised to examine the influence of capacitance
and gap voltage. In addition, the use of ANOVA and grey connection
analysis allowed for the investigation of the specific influence of each
parameter and the determination of their ideal combination in order to
maximise multiple outputs. Lodhi and Agrawal ¥ have conducted a study
using wire electrical discharge machining (WEDM) to examine the
relationship between machining parameters (such as pulse on time and off
time, peak current, and wire feed) and material removal rate and surface
roughness for Al-SiC-ZrO,. The Box-Behnken Design was used to arrange
the experiments, while the response surface technique was used to create the
models. By employing the desirability function technique, we successfully
accomplished the optimisation of process parameters with multiple
responses. Karatas and Biberci 2% have conducted a study to investigate how
processing parameters affect cutting width, material removal rate and surface
roughness in the wire electrical discharge machining of Ti-6Al-4V alloy.
The experimental parameters were selected using the Taguchi Lg orthogonal
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array in order to decrease the expenses associated with executing the tests. In
order to establish the impact that the processing settings had on the
percentages, an ANOVA was carried out.

Based on a thorough examination of the current body of research, it is
clear that machining parameters have a significant impact on both the surface
quality and material removal rate (MRR). The research community is
continuously prioritising the examination of the influence of process
parameters of WEDM on Surface Roughness (Ra), and Material Removal
Rate (MRR). Hence, it is imperative to adjust the machining parameters to
enhance both machinability and surface quality. Response surface
methodology combined with Al-based particle swarm optimisation is a
widely adopted strategy in this field.

Currently, there is a lack of research on the material removal rate and
surface quality of titanium grade 12 when using WEDM with the assistance
of response surface methodology (RSM) and Al-based particle swarm
optimisation. This topic has not been extensively studied in the existing
literature. In order to fill the gap that has been identified in the existing body
of literature, the purpose of this study is to investigate the matter. Through
the use of the WEDM process, the purpose of this investigation is to
investigate the influence that particular input elements have on the surface
roughness and MRR on titanium alloy grade 12.

Experimental Investigation

The work-piece material being investigated for the current inquiry is an
alloy called Titanium grade 12 (Ti Gr 12). It has a diameter of 10 mm and a
length of 1000 mm. Titanium Grade 12 is widely employed in marine
applications, optics, aerospace, electronics, and medical sectors due to its
high strength (even at high temperatures), durability, corrosion resistance,
lightweight nature, and ability to be welded.

Modelling of WEDM process features using RSM

Experimental design is a distinctive and careful approach to obtain the
most reliable and undeniable statistical results with limited resources. In
order to obtain accurate information, this statistical methodology proposes
elements of an experimental plan. A valid experimental design is usually
employed to determine the impact of a change in one component relative to
another, using the fewest possible experimental trials. Furthermore, it is
crucial to analyse the interaction among input factors in order to control the
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arrangement of parameters and achieve optimality. Choosing the input
variables is crucial in this situation. The input variables are outlined in Table
1.

Table 1: Input factors and their corresponding levels

. Levels
Input factors Unit
1 2 3
Pulse on time (Ton) us 4 6 8
Pulse off time (Toff) us 8 10 12
Wire feed (WF) m/min 6 8 10
Gap voltage (V) \ 50 55 60

Machining Process

A WEDM setup controlled by a computer numerical control is used for
the experimental experiments. In WEDM, the work-piece's material is
processed using an electro-thermal mechanism. Usually, pulsating direct
current creates an electric spark that helps remove excess material from the
workpiece by melting and vaporising it. In this process, the wire is referred
to as the cathode and the work piece as the anode. Adequate gap voltage
produces a strong spark that raises the temperature to 10,000 °C, melting the
excess material. Rinsing the additional material with dielectric liquid
removes it. De-ionized water serves as the dielectric liquid in this
experiment. An established Design of Experiments (DOE) is used when
conducting experimental studies. Certain parameters are treated as constants
throughout the tests. The criteria's particulars are as follows: There is one
AC servo motor in the drive system. The wire used has a 0.25 mm diameter
and is composed of copper. There is a vertical angle cut in the wire.

Experimental Results

Figures 1 and 2 display the experimental findings for various quality
criteria. The experimental settings in these images correspond to the
positions of the central composite design technique, as shown by the
experiment number. For instance, experiment 1 displays the initial CCD
method experimental parameters.

Formulating a Mathematical Framework

In order to establish the mathematical relationship between the two
output responses MRR and surface roughness and the WEDM cutting
settings, the current research study creates a response surface model. To
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carry out the study, a second order polynomial equation has been developed.
Equations 1 and 2, which represent the mathematical models with the best
and finest fits, are provided below. Minitab 17 software is used to analyse
the response, i.e., material removal rate and surface roughness.

MRR = 8.185 + 2.4288 A — 0.8116B + 0.2944C — 0.3768D —
0.724A x A—0.251B X B+ 0.255C X C + 0.085D x D — 0.4024 X B +
0.6974A x C + 0.071A x D — 0.108B x C — 0.204B x D 4+ 0.296C x D (1)

Ra = 2.12653 + 0.119167A — 0.005133B — 0.005658C +
0.005762D — 0.161484 x A — 0.03031B x B + 0.01745C x C —
0.03392D X D + 0.07917A x B — 0.11343A X C + 0.036214 X D +
0.01085 B x C — 0.08813B x D — 0.01250C x D 2)

MRR
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Fig 1: Experimental measured value of MRR

Ra

2
[SIN

Surface Roughness
r‘ -
=] -]

(il
a

{w

n
)
w
=)
©

12 15 18 21 24 27
No. of Experiments

Fig 2: Experimental measured value of surface roughness
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Al based Particle Swarm Optimization

Particle Swarm Optimisation (PSO) is an intriguing computer method
that draws inspiration from fish and bird social behaviour. In artificial
intelligence (Al), it is frequently utilised to resolve challenging optimisation
issues. Kennedy and Eberhart created particle swarm optimisation, or PSO,
in 1995, and because of its adaptability and ease of use, it has grown to be
one of the most used swarm-intelligence-based algorithms. Strong and
flexible optimisation solutions are provided by Al-based PSO algorithms,
which greatly enhance industrial processes. Supply chain management,
scheduling, process parameter optimisation, facility planning, and quality
control are just a few of the many areas they are used in. Using PSO's
benefits can help manufacturers achieve higher output, cheaper expenses,
and better-quality products.

Optimization for Quality Improvement

The PSO algorithm can be used to determine the optimal cutting
parameters in WEDM, such as pulse on time, pulse off time, voltage, and
peak current, to minimise surface roughness and maximise MRR. The
purpose of using MATLAB is to write and execute code, specifically in the
R2015a version. The PSO optimisation settings are selected following
extensive testing. This study assumes a population size of 50 individuals for
five input parameters, and a maximum of 100 iterations. The weight factor
for inertia is 0.65. The PSO values and the results of the composite
desirability function analysis are also contrasted.

From composite desirability technique the maximum value of MRR is
12.4845 mm3/sec when Ton is 8ls, Tof is 8us, wire feed rate is 10 m/min and
voltage is 60 volts. However, the PSO analysis conducted on Figure 3
reveals that the material removal rate reaches its optimum value of 15.021
mma3/sec using the PSO technique. The optimal parameter settings are pulse
on time of 9 us, pulse on time of 8 ps, pulse off time of 7 ps and voltage of
65 volt for achieving the predicted maximum value of MRR in PSO
technique. From composite desirability technique the minimum value of
surface roughness is 1.49 pum when Ton is 4 ps, Tor is 12 ys, wire feed rate is
6 m/min and voltage 60 volt. According to the PSO analysis presented in
Figure 4, it has been found that the surface roughness reaches its optimal
value from the PSO technique at a measurement of 1.301 um. The optimal
parameter settings are pulse on time is 4 ps, pulse off time is 11 ps, wire
feed rate is 6 m/min and voltage 55 volt for attaining the predicted minimum
value of surface roughness in PSO method.
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Fig 4: Convergence diagram of surface roughness

In order to confirm the suggested mathematical models, more
experiments have been conducted based on parameter settings that have
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evolved from the optimisation result for the combined maximum MRR and
minimum surface roughness. Confirmation experiments yielded values for
the MRR of 14.921 mm?%/sec and the surface roughness of 1.318 pum, with an
error of less than 5%.

In terms of the consistency and accuracy of the results, the PSO
algorithm can find the most globally optimal solution. It is proven that the
PSO approach performs substantially better in terms of optimisation than the
composite desirability method.

Morphology of Machined Surface

During Wire Electrical Discharge Machining (WEDM), craters form on
the surface of the work-piece due to the discharge process. Dielectric fluids
and electrode materials also have an impact on it. Metallurgical
abnormalities become apparent in the outer layer of the work piece when the
discharge temperatures reach 8500 °C-12500 °C. This work examines the
surface topography and explores methods to control its characteristics in
order to improve the surface roughness of WEDM surfaces. The surface
exhibited various features, such as melt drops, shallow craters, spherical
bubbles, micro fissures, and voids, which are observed in scanning electron
micrograph as a consequence of the release of heat energy during discharges
and consequent cooling. Upon discharge, the spherical particles exhibit a
molten metal state, subsequently solidifying and adhering to the surface.
Increasing the pulse on time results in the formation of machined surface
with deep craters rims of different sizes. Figure 5 shows the SEM image of
WEDM machined surface. This longer Ton generates high-energy discharge
pulses, resulting in significant thermal amends to the machined part.

Fig 5: SEM image of WEDM machined surface
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Conclusion

The current study used RSM and Al based PSO algorithm to observe the
influence of key parameters on machining criteria, specifically material
removal rate and surface roughness. The control parameters have been
simultaneously considered to determine the patterns of changes. An
experimental investigation is conducted to study the impact of cutting
parameters on material removal rate (MRR) and surface roughness (Ra) in
the wire electrical discharge machining (WEDM) of titanium grade 12. The
regulation of MRR and surface roughness in WEDM process is achieved by
adjusting the wire feed rate, gap voltage, Ton, and Tosr according to specific
machining situations. By adjusting these parameters as necessary, one can
attain the maximum MRR and the minimum surface roughness in WEDM
process. The projected values of MRR and R, closely correspond to those
estimated from the experimental data using the best parameter settings.
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Machining Characteristics using Regression and
Visualization Tools: A Comprehensive Review

Suresh Guin, Arijit Mukherjee, Md. Ershad and Bikash Panja

Abstract

Understanding machining characteristics is crucial for optimizing
manufacturing processes. Regression analysis and visualization tools offer
valuable insights into the relationships between machining parameters and
performance outcomes such as surface roughness, material removal rate, tool
wear, and cutting forces. This review explores the application of regression
techniques and advanced visualization tools to model, analyze, and predict
machining behavior across different materials and processes. By examining
key studies, we identify trends, challenges, and future directions in the
integration of these methods for enhancing machining performance. The
review highlights how data-driven approaches can provide a deeper
understanding of complex machining systems and improve overall process
efficiency.

Keywords: Machining characteristics, regression analysis, visualization
tools, surface roughness, material removal rate, tool wear

Introduction

Machining processes are fundamental to manufacturing, and the ability
to accurately predict outcomes such as surface roughness, material removal
rate (MRR), tool wear, and cutting forces is vital to achieving high-quality,
efficient production. The complexity of machining behavior, influenced by
multiple variables such as cutting speed, feed rate, depth of cut, and tool
material, makes it essential to adopt robust analytical techniques. Regression
analysis and visualization tools are widely used for analyzing machining
data, providing a systematic approach to understanding the relationships
between process parameters and machining characteristics.

Page | 73



Research Methodologies in Engineering and Applied Science

Regression techniques are statistical methods that model the relationship
between a dependent variable (machining outcomes) and one or more
independent  variables (machining parameters). Visualization tools
complement regression by graphically representing data and relationships,
making it easier to identify trends, outliers, and interactions among variables.
These tools enable engineers and researchers to not only quantify but also
visualize the impact of various machining parameters on performance,
ultimately improving process control and optimization.

This review provides a comprehensive analysis of the use of regression
and visualization tools in machining studies. We explore the different types
of regression models used to predict machining outcomes, examine the role
of visualization tools in interpreting machining data, and discuss their
application across various machining processes. Furthermore, we address the
challenges and limitations associated with these techniques and suggest
future research directions.

Regression Analysis in Machining Studies

Regression analysis has become a powerful tool in machining research
for developing predictive models and optimizing machining performance.
There are several types of regression techniques, each suited to specific types
of data and relationships.

Linear Regression

Linear regression is the simplest form of regression analysis and is
commonly used to model the relationship between a single dependent
variable and one or more independent variables. In the context of machining,
linear regression is often applied to predict outcomes such as surface
roughness and tool wear based on factors like cutting speed, feed rate, and
depth of cut (Kumar et al., 2016). A typical linear regression model takes the
form:

y = By + Pz, + Boxa + -+ + Bur, + €
Where:

e yisthe dependent variable (e.g., surface roughness).

®  Xi,Xo,...,Xn are the independent variables (e.g., cutting speed, feed
rate).

e [ isthe intercept.
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e Bu,Bo.....Bn are the regression coefficients.

e ¢ epsilone represents the error term.

Linear regression is widely used in machining studies due to its
simplicity and ease of interpretation. For example, Gologlu and Sakarya
(2008) used linear regression to model the surface roughness of aluminum
alloys during end milling. The results demonstrated that feed rate had the
most significant effect on surface roughness, while cutting speed had a
smaller but still notable impact.

Multiple Linear Regression (MLR)

Multiple linear regression (MLR) extends the linear regression model by
considering multiple independent variables simultaneously. MLR is
particularly useful when analyzing complex machining processes where
several parameters interact to influence outcomes (Singh & Rao, 2018). By
modeling the combined effect of parameters, MLR provides a more
comprehensive understanding of machining behavior.

In a study on the milling of titanium alloys, Shunmugesh et al. (2019)
employed MLR to predict tool wear and cutting forces. The model showed
that both feed rate and cutting speed significantly impacted tool wear, while
depth of cut had a lesser effect. This type of analysis helps in identifying the
most critical factors for optimizing machining performance.

Nonlinear Regression

Many machining processes exhibit nonlinear behavior, especially when
machining hard materials or at extreme cutting conditions. Nonlinear
regression models can capture these complex relationships more effectively
than linear models. These models are particularly useful when machining
parameters have diminishing or escalating effects on outcomes like MRR or
surface integrity (Rao & Murthy, 2014).

In turning operations involving hard steels, nonlinear regression has
been used to model surface roughness as a function of cutting speed and tool
geometry. Results from these studies often reveal that beyond a certain
cutting speed, the surface finish begins to deteriorate, which is a relationship
that cannot be captured by linear models.

Polynomial Regression

Polynomial regression is a form of regression analysis where the
relationship between the independent variable and the dependent variable is
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modeled as an nth-degree polynomial. This method is particularly useful
when the data shows a curved or complex relationship, such as in high-speed
machining processes where the effects of parameters may not be linear or
consistent (Yadav & Yadav, 2020).

Polynomial regression has been effectively applied in the modeling of
MRR in electrical discharge machining (EDM). For example, a second-order
polynomial model was used by Dhar et al. (2007) to predict the MRR in
EDM of aluminum composites. The model demonstrated a high level of
accuracy and provided insights into how MRR changes with variations in
pulse duration and discharge current.

Logistic Regression

Logistic regression is often used in machining studies when the outcome
variable is binary or categorical, such as tool failure or no tool failure. It is
particularly useful in failure prediction models, where the likelihood of tool
breakage, chatter, or other binary events is predicted based on machining
conditions (Davim & Reis, 2003).

Stepwise Regression

Stepwise regression is a method that involves adding or removing
variables iteratively to build a model that explains the variance in the
dependent variable while avoiding overfitting. This method is used to
identify the most significant variables affecting machining performance and
is particularly useful in cases with large datasets or when there are many
potential predictors (Rai et al., 2017).

Visualization Tools in Machining Analysis

Visualization tools play a vital role in interpreting machining data,
helping researchers and engineers to better understand the relationships
between variables and identify patterns or anomalies. Data visualization
techniques range from basic plots and graphs to more advanced methods
such as heat maps, contour plots, and 3D surface plots.

Scatter Plots

Scatter plots are commonly used to visualize the relationship between
two continuous variables, such as feed rate and surface roughness. These
plots allow for the identification of trends, clusters, and potential outliers,
making them useful in both linear and nonlinear machining studies
(Montgomery, 2017).
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3D Surface Plots

3D surface plots are used to visualize the effect of two independent
variables on a dependent variable, such as the combined effect of cutting
speed and depth of cut on surface roughness. These plots are particularly
useful in machining studies where interaction effects are present (Kumar &
Sharma, 2018).

For example, in a study on the milling of steel alloys, Kumar et al.
(2018) used 3D surface plots to visualize the combined effects of feed rate
and spindle speed on surface roughness. The plots revealed a nonlinear
relationship, with the lowest surface roughness achieved at a specific
combination of feed rate and speed.

Heat Maps

Heat maps are a graphical representation of data where individual values
are represented as colors. In machining, heat maps can be used to show the
distribution of surface roughness, tool wear, or temperature across the
surface of a workpiece. This can provide valuable insights into wear
patterns, thermal effects, and other phenomena that affect machining
performance (Teti et al., 2010).

Residual Plots

Residual plots are used to assess the quality of a regression model by
showing the difference between observed and predicted values. In machining
studies, residual plots can help identify whether a model has captured all
relevant trends or whether further improvements are needed. If the residuals
show a random pattern, the model is considered a good fit, while systematic
patterns suggest the need for model refinement (Montgomery, 2017).

Contour Plots

Contour plots are useful for visualizing the relationship between three
variables in two dimensions. In machining studies, contour plots are often
used to optimize processes by showing the combinations of machining
parameters that yield the best results, such as minimizing surface roughness
or maximizing MRR (Rao et al., 2019).

Case Studies of Regression and Visualization in Machining
Case Study 1: Optimization of Surface Roughness in Turning

In a study by Rao et al. (2019), multiple regression and 3D surface plots
were used to model and optimize surface roughness in the turning of
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stainless steel. The researchers found that feed rate and cutting speed had a
significant interaction effect, which was best visualized using 3D surface
plots. This allowed them to identify the optimal machining conditions for
achieving the desired surface finish.

Case Study 2: Modeling Tool Wear in Milling

In milling operations, tool wear is a critical factor affecting both tool life
and product quality. A study by Singh and Rao (2018) applied polynomial
regression to model tool wear based on cutting speed, feed rate, and depth of
cut. Heat maps were used to visualize wear distribution across the tool
surface, providing insights into the most wear-prone areas and helping to
extend tool life through process optimization.

Conclusion

Regression analysis and visualization tools offer powerful capabilities
for modeling and understanding machining characteristics. Linear and
nonlinear regression techniques allow researchers to predict key machining
outcomes such as surface roughness, tool wear, and material removal rate,
while visualization tools enhance the interpretation of these models by
graphically representing relationships and trends. The integration of these
methods into machining studies has led to significant advancements in
process optimization and control.

Future research should focus on the application of more advanced
regression techniques, such as machine learning-based regression, and the
development of real-time visualization tools for monitoring and controlling
machining processes. By continuing to refine these methods, researchers and
engineers can further enhance machining performance and reduce
manufacturing costs.
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A Comprehensive Review on Wire Electrical Discharge
Machining (WEDM) Process Parameters: Effects,
Optimization and Applications

Soumak Bose, Suman Kumar Ghosh, Ranjan Kumar and Bikash Panja

Abstract

Wire Electrical Discharge Machining (WEDM) is a non-traditional
machining process that uses electrical energy to cut conductive materials
with high precision. The performance of WEDM is highly influenced by
process parameters such as pulse duration, wire feed rate, wire tension, and
dielectric fluid properties. This review explores the key WEDM parameters,
their effects on machining characteristics like surface roughness, material
removal rate (MRR), and kerf width, and various optimization techniques
used to improve process efficiency. Current trends and future research
directions are discussed, highlighting the role of advanced modeling
approaches in optimizing the WEDM process for complex applications.

Keywords: WEDM, process parameters, surface roughness, material
removal rate, kerf width, optimization

Introduction

Wire Electrical Discharge Machining (WEDM) has gained wide
acceptance in industries that require high precision, such as aerospace,
medical devices, and tool and die manufacturing. The non-contact nature of
the process allows for the machining of hard and brittle materials, making it
advantageous over traditional methods. WEDM works by generating
electrical sparks between a wire electrode and the workpiece, which leads to
the erosion of material in the form of micro-craters.

The efficiency and quality of the WEDM process are highly dependent
on various process parameters. Adjusting these parameters can significantly
impact key performance indicators like surface roughness, MRR, tool wear,
and dimensional accuracy. However, the complex interactions between these
parameters pose challenges in achieving optimal results.
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This article provides a comprehensive review of the primary WEDM
process parameters and their effects on machining outcomes. The review
focuses on key parameters such as pulse duration, wire feed rate, wire
tension, and dielectric fluid. It also discusses various optimization
techniques, including Taguchi methods, artificial neural networks (ANNS),
and response surface methodology (RSM). Lastly, we explore current trends
in WEDM research and potential future developments.

Key Process Parameters (WEDM)

The performance of the WEDM process is influenced by several critical
process parameters, which can be grouped into electrical, mechanical, and
environmental categories. Understanding the effect of these parameters is
crucial for optimizing the process.

Pulse Duration

Pulse duration, or pulse-on time, refers to the time during which
electrical energy is applied between the wire and the workpiece. The pulse
duration controls the amount of energy delivered per discharge, influencing
both the material removal rate and the surface integrity of the machined part.

Studies have shown that increasing pulse duration results in a higher
material removal rate but often at the cost of surface quality (Singh &
Maheshwari, 2006). Longer pulse duration leads to deeper craters on the
workpiece surface, resulting in rougher surfaces. However, shorter pulse
duration may not provide enough energy for effective material removal,
leading to lower efficiency. Optimizing pulse duration is essential to
balancing material removal rate and surface finish. Longer pulse durations
enhance MRR but can negatively impact surface roughness, whereas shorter
pulses provide finer surface finishes at the cost of reduced MRR.

Pulse Frequency (Pulse-off Time)

Pulse frequency, or pulse-off time, determines the interval between
consecutive electrical discharges. A shorter pulse-off time leads to higher
machining rates but can also increase the chances of wire breakage and po